3,839 research outputs found

    Gravitationally Focused Dark Matter Around Compact Stars

    Full text link
    If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation produces detectable gamma-ray emission. Here, we discuss the possibility that an annihilation signal may arise near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density, with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.Comment: ApJS, accepted; 12 pages, 4 figure

    The Arm Motion (AMD) Detection Test

    Get PDF
    Stroke can lead to sensory deficits that impair functional control of arm movements. Here we describe a simple test of arm motion detection (AMD) that provides an objective, quantitative measure of movement perception related proprioceptive capabilities in the arm. Seven stroke survivors and thirteen neurologically intact control subjects performed the AMD test. In a series of ten trials that took less than 15 minutes to complete, participants used a two-button user interface to adjust the magnitude of hand displacements produced by a horizontal planar robot until the motions were just perceptible (i.e. on the threshold of detection). The standard deviation of movement detection threshold was plotted against the mean and a normative range was determined from the data collected with control subjects. Within this normative space, subjects with and without intact proprioception could be discriminated on a ratio scale that is meaningful for ongoing studies of degraded motor function. Thus, the AMD test provides a relatively fast, objective and quantitative measure of upper extremity proprioception of limb movement (i.e. kinesthesia)

    NICMOS Images of the GG Tau Circumbinary Disk

    Full text link
    We present deep, near-infrared images of the circumbinary disk surrounding the pre-main-sequence binary star, GG Tau A, obtained with NICMOS aboard the Hubble Space Telescope. The spatially resolved proto-planetary disk scatters roughly 1.5% of the stellar flux, with a near-to-far side flux ratio of ~1.4, independent of wavelength, and colors that are comparable to the central source; all of these properties are significantly different from the earlier ground-based observations. New Monte Carlo scattering simulations of the disk emphasize that the general properties of the disk, such as disk flux, near side to far side flux ratio and integrated colors, can be approximately reproduced using ISM-like dust grains, without the presence of either circumstellar disks or large dust grains, as had previously been suggested. A single parameter phase function is fitted to the observed azimuthal variation in disk flux, providing a lower limit on the median grain size of 0.23 micron. Our analysis, in comparison to previous simulations, shows that the major limitation to the study of grain growth in T Tauri disk systems through scattered light lies in the uncertain ISM dust grain properties. Finally, we use the 9 year baseline of astrometric measurements of the binary to solve the complete orbit, assuming that the binary is coplanar with the circumbinary ring. We find that the estimated 1 sigma range on disk inner edge to semi-major axis ratio, 3.2 < Rin/a < 6.7, is larger than that estimated by previous SPH simulations of binary-disk interactions.Comment: 40 pages, 8 postscript figures, accepted for publication in Ap

    The First Detection of Spatially Resolved Mid-Infrared Scattered Light from a Protoplanetary Disk

    Full text link
    We report spatially resolved 11.8 micron images, obtained at the W. M. Keck 10 m telescope, of the protoplanetary disk around the pre--main-sequence star HK Tau B. The mid-infrared morphology and astrometry of HK Tau B with respect to HK Tau A indicate that the flux observed in the mid-infrared from HK Tau B has been scattered off the upper surface of its nearly edge-on disk. This is the first example of a protoplanetary disk observed in scattered light at mid-infrared wavelengths. Monte Carlo simulations of this disk show that the extent (FWHM =0."5, or 70 AU) of the scattered light nebula in the mid-infrared is very sensitive to the dust size distribution. The 11.8 micron measurement can be best modelled by a dust grain population that contains grains on the order of 1.5-3 micron in size; grain populations with exclusively sub-micron grain sizes or power law size distributions that extend beyond 5 micron cannot reproduce the observed morphology. These grains are significantly larger than those expected in the ISM implying that grain growth has occurred; whether this growth is a result of dust evolution within the disk itself or had originally occurred within the dark cloud remains an open question.Comment: 11 pages, 1 postscript figure, accepted for publication in ApJ

    Source-intrinsic near-infrared properties of Sgr A*: Total intensity measurements

    Full text link
    We present a comprehensive data description for Ks-band measurements of Sgr A*. We characterize the statistical properties of the variability of Sgr A* in the near-infrared, which we find to be consistent with a single-state process forming a power-law distribution of the flux density. We discover a linear rms-flux relation for the flux-density range up to 12 mJy on a timescale of 24 minutes. This and the power-law flux density distribution implies a phenomenological, formally non-linear statistical variability model with which we can simulate the observed variability and extrapolate its behavior to higher flux levels and longer timescales. We present reasons why data with our cadence cannot be used to decide on the question whether the power spectral density of the underlying random process shows more structure at timescales between 25 min and 100 min compared to what is expected from a red noise random process.Comment: Accepted to ApJS, August 27, 201

    Approaching the event horizon: 1.3mm VLBI of SgrA*

    Full text link
    Advances in VLBI instrumentation now allow wideband recording that significantly increases the sensitivity of short wavelength VLBI observations. Observations of the super-massive black hole candidate at the center of the Milky Way, SgrA*, with short wavelength VLBI reduces the scattering effects of the intervening interstellar medium, allowing observations with angular resolution comparable to the apparent size of the event horizon of the putative black hole. Observations in April 2007 at a wavelength of 1.3mm on a three station VLBI array have now confirmed structure in SgrA* on scales of just a few Schwarzschild radii. When modeled as a circular Gaussian, the fitted diameter of SgrA* is 37 micro arcsec (+16,-10; 3-sigma), which is smaller than the expected apparent size of the event horizon of the Galactic Center black hole. These observations demonstrate that mm/sub-mm VLBI is poised to open a new window onto the study of black hole physics via high angular resolution observations of the Galactic Center.Comment: 6 pages, 4 figures, Proceedings for "The Universe under the Microscope" (AHAR 2008), held in Bad Honnef (Germany) in April 2008, to be published in Journal of Physics: Conference Series by Institute of Physics Publishing, R. Schoedel, A. Eckart, S. Pfalzner, and E. Ros (eds.

    The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT - Implications for time-resolved polarimetric measurements of Sgr A*

    Full text link
    We report on the results of calibrating and simulating the instrumental polarization properties of the ESO VLT adaptive optics camera system NAOS/CONICA (NACO) in the Ks-band. We use the Stokes/Mueller formalism for metallic reflections to describe the instrumental polarization. The model is compared to standard-star observations and time-resolved observations of bright sources in the Galactic center. We find the instrumental polarization to be highly dependent on the pointing position of the telescope and about 4% at maximum. We report a polarization angle offset of 13.28{\deg} due to a position angle offset of the half-wave plate that affects the calibration of NACO data taken before autumn 2009. With the new model of the instrumental polarization of NACO it is possible to measure the polarization with an accuracy of 1% in polarization degree. The uncertainty of the polarization angle is < 5{\deg} for polarization degrees > 4%. For highly sampled polarimetric time series we find that the improved understanding of the polarization properties gives results that are fully consistent with the previously used method to derive the polarization. The small difference between the derived and the previously employed polarization calibration is well within the statistical uncertainties of the measurements, and for Sgr A* they do not affect the results from our relativistic modeling of the accretion process.Comment: 16 pages, 15 figures, 5 tables, accepted by A&A on 2010 October 1

    The nuclear star cluster of the Milky Way

    Get PDF
    The nuclear star cluster of the Milky Way is a unique target in the Universe. Contrary to extragalactic nuclear star clusters, using current technology it can be resolved into tens of thousands of individual stars. This allows us to study in detail its spatial and velocity structure as well as the different stellar populations that make up the cluster. Moreover, the Milky Way is one of the very few cases where we have firm evidence for the co-existence of a nuclear star cluster with a central supermassive black hole, Sagittarius A*. The number density of stars in the Galactic center nuclear star cluster can be well described, at distances 1\gtrsim1 pc from Sagittarius A*, by a power-law of the form ρ(r)rγ\rho(r)\propto r^{-\gamma} with an index of γ1.8\gamma\approx1.8. In the central parsec the index of the power-law becomes much flatter and decreases to γ1.2\gamma\approx1.2. We present proper motions for more than 6000 stars within 1 pc in projection from the central black hole. The cluster appears isotropic at projected distances 0.5\gtrsim0.5 pc from Sagittarius A*. Outside of 0.5 pc and out to 1.0 pc the velocity dispersion appears to stay constant. A robust result of our Jeans modeling of the data is the required presence of 0.52.0×106M0.5-2.0\times10^{6} M_{\odot} of extended (stellar) mass in the central parsec of the Galaxy.Comment: To appear in the proceedings of "The Universe under the Microscope - Astrophysics at High Angular Resolution", Journal of Physics:Conference Series (IOP; http://www.iop.org/EJ/conf) This version has been slightly modified (e.g. double-log plot in right hand panel of Figure 5

    Disks in the Arches cluster -- survival in a starburst environment

    Get PDF
    Deep Keck/NIRC2 HK'L' observations of the Arches cluster near the Galactic center reveal a significant population of near-infrared excess sources. We combine the L'-band excess observations with K'-band proper motions, to confirm cluster membership of excess sources in a starburst cluster for the first time. The robust removal of field contamination provides a reliable disk fraction down to our completeness limit of H=19 mag, or about 5 Msun at the distance of the Arches. Of the 24 identified sources with K'-L' > 2.0 mag, 21 have reliable proper motion measurements, all of which are proper motion members of the Arches cluster. VLT/SINFONI K'-band spectroscopy of three excess sources reveals strong CO bandhead emission, which we interpret as the signature of dense circumstellar disks. The detection of strong disk emission from the Arches stars is surprising in view of the high mass of the B-type main sequence host stars of the disks and the intense starburst environment. We find a disk fraction of 6 +/- 2% among B-type stars in the Arches cluster. A radial increase in the disk fraction from 3 to 10% suggests rapid disk destruction in the immediate vicinity of numerous O-type stars in the cluster core. A comparison between the Arches and other high- and low-mass star-forming regions provides strong indication that disk depletion is significantly more rapid in compact starburst clusters than in moderate star-forming environments.Comment: 51 pages preprint2 style, 22 figures, accepted by Ap
    corecore